
1

ICT286
Web and Mobile Computing

Topic 7
Server-Side Processing 

With PHP



2

Objectives
• Understand how server-side scripting works and the difference between

client-side scripting and server-side scripting
• Understand how to include PHP scripts in HTML. Understand the copy

and interpret modes.
• Understand and be able to use Boolean, integer and float and string 

values and variables. 
• Understand the differences between single quoted string literals and 

double quoted string literals.
• Understand type coercions and explicit type conversions.
• Understand and be able to use print, printf and echo to generate output.

• Understand and be able to write simple PHP code with conditions and
control structures.



3

Objectives
• Understand and be able to send user input from HTML forms using 

HTTP GET method to server side.

• Understand and be able to send user input from HTML forms using 
HTTP POST method to server side.

• Be able to obtain client data using $_GET and $_POST arrays.

• Understand and be able to use strings and string related functions.
• Understand and be able to define and use new PHP functions.
• Understand and be able to handle files using PHP.



4

Sebesta: Chapter 9

Readings



5

Why Server-side Scripting?
• HTML is static.
• Client-side JavaScript is dynamic but only on the 

client-side
• It can’t get access to the resources on a server (e.g., a 

database)
• There is certain information which we cannot be 

processed on the client (e.g., passwords).
• Server-side technologies, such as PHP, not only allow 

us to give users access to services, but also have the 
services processed by the server.



6

PHP
• Originally developed by Rasmus Lerdorf in 1994.

• Initially it stands for “Personal Home Page”. Later it 
became “PHP: Hypertext Preprocessor”

• The definition is recursive, so don’t ask what the “PHP” in 
“PHP: Hypertext Preprocessor” stands for.

• PHP is a popular, general purpose scripting language that 
is especially suited to all kinds of dynamic web 
development and can be embedded into HTML. 

• Forms handling
• Data exchanges between client and server
• File processing
• Database access



7

Why PHP?
• PHP enables the development of more dynamic web 

pages.  PHP can verify forms, react to end-user input and 
access files and databases.

• PHP runs on the web server, so it can access files or 
databases on or connected to the web server.

• PHP is open source.  It is available for free download on 
the Internet.  There are many web pages and online 
tutorials that give information about PHP.

• PHP is an alternative to CGI, ASP.NET, Ruby, and JSP.



8

Basic Rules
• PHP syntax is similar to that of JavaScript
• PHP is interpreted just like JavaScript, but on the server-

side.
• PHP is dynamically typed just like JavaScript
• PHP variable names are case sensitive, just like 

JavaScript.
• However, unlike JavaScript, keywords and function 

names in PHP are case-insensitive. However, you 
should adopt a consistent style in writing PHP to make it 
easier to follow.



9

How Server-side 
Scripting Works

...HTML...
...script code...

...HTML...
...script code...

Client-side Server-side

1. Browser requests URL

3. Web server invokes 
interpreter to turn the 
script code into HTML5. Browser reads and 

displays HTML
...HTML...
...HTML...
...HTML...
...HTML...4. Web server sends 

HTML back to browser

2. Web server finds 
requested file.



10

Compared to Client-side 
Scripting

...HTML...
...script code...

...HTML...
...script code...

Client-side Server-side

1. Browser requests URL

2. Web server 
sends HTML 
and script 
code back to 
browser

3. Browser interprets the 
script code and displays 
appropriately



11

A Simple PHP Script
• All it does is print the words �What a boring line…� in a 

browser

<!DOCTYPE html>
<html>
<body>

<?php
echo "<p>What a boring line...</p>"; 

?>
</body>
</html>



12

What actually happens:

Web Server on
ceto.murdoch.edu.au

boring.php

GET  /~s900432d/ICT286/examples/boring.php HTTP/1.1

HTTP/1.1  200 OK
...
<html>

<body>
<p>What a boring line...</p>

</body>
</html>

1. Request from browser

2. Response from server

Web Browser



13

To Run PHP Scripts
• What it essentially involves is:

• Create the script file using a text editor from the 
public_html directory under your home directory on 
ceto.

• Access the script file using a browser and the 
appropriate URLs.

<!DOCTYPE html>
<html> 
<body> 
<?php

echo "<p>Hello World</p>”; 
?> 

</body> 
</html>



14

<!DOCTYPE html>
<html> 
<body> 

<p>Hello World</p>
</body> 
</html>

To Run PHP Scripts
• The output of the PHP script is a pure HTML code 

which is sent to the client for rendering.



15

Include PHP Scripts
• Any PHP code must be enclosed within "<?php …?>” tag.

• The PHP code can be embedded within the HTML code.

• It can also be read from an external file using include or 

require statements, such as 

include 'table.php';
require 'table.php';
• The file can also contain HTML code as well as PHP code. The 

PHP code must be enclosed within “<?php …  ?>” tag 

• If there is an error reading the file, include will produce a 

warning, while require will produce a fatal error

• Web servers can be configured to recognise PHP files in 

different ways – e.g., by looking for file extension .php.



16

Copy or Interpret?
• The PHP processor has two modes:

– Copy mode: if it encounters HTML code, it copies the 
code to the output

– Interpret mode: if it encounters PHP code, it interpret 
the code and replace the PHP code with its output.



17

Comments
• Comments can be made within the script, and 

are enclosed within /* … */ brackets.
• or by placing a comment after a crosshatch 

sign (#) 
• or after two forward slashes (//).  
• Notice that comments can span several lines 

if the first method is used.
• All comments are ignored by the interpreter. 



18

Variables
• All variable names in PHP begin with a dollar 

sign ($) and must be followed by an 
underscore(_) or a letter, and then any number 
of letters, digits or underscores.

• Variable names in PHP are case-sensitive; 
$MyString is different to $mystring is 
different to $myString etc.

• You do not declare the data type of a variable.
• The type is determined when it is assigned a value.
• Thus the type changes during the execution of the program.



19

Unbound Variables
• In PHP, an unassigned variable has NULL value. An 

unassigned variable is also called an unbound variable.
• if you use an unbound variable, its NULL value may be 

coerced to another value depending on the context:
– If the context is a number, it is coerced to 0

– If the context is a string, it is coerced to an empty string.
– In a Boolean context, it is coerced to False

• You can test to see whether a variable is unbound using 
function IsSet, eg:
– IsSet($x) returns TRUE if $x is assigned a value
– IsSet($x) returns FALSE if $x is unbound



20

Primitive Types
• Four scalar types:

– boolean
– integer
– float
– string

• Two compound types:
– array
– object

• Two special types:
– resource: points to an external resource such as a file or 

database connection
– Null: only one value of null type: NULL



21

Example Basic Variable 
Types

<?php 

$number = 5;     //  integer type
$real = 37.2;    //  float type
$done = TRUE;    // Boolean type
$string1 = "this is a string"; // String type
$string2 = 'this is another "string"’;

?>



22

Boolean
• Boolean values are TRUE and FALSE (case 

insensitive)
• Non Boolean values can appear in Boolean 

context. These values will be evaluated to TRUE or 
FALSE:

– Integer:   to FALSE only if the value is 0. Otherwise to 
TRUE

– String: to FALSE only if the string is empty or "0". 
Otherwise to TRUE (so string “0.0” is evaluated to 
TRUE!)

– Double: to FALSE only if the value is exactly 0.0. 
• Do not use double expression in the Boolean context



23

Integer and Double
• Numbers in PHP can be integer (integer type), for 

example 5, -12.
• or floating-point numbers (double type), i.e., with 

decimal point and/or exponent, for example, 3.14,  
.345, 345., 1.23e3. 

• There are functions for numbers; for example:
$num2 = round($num1);

$num2 will contain $num1 rounded to the nearest integer

$num2 = round($num1, 2);
$num2 will contain $num1 rounded to 2 decimal places

$num2 = ceil($num1);
$num2 will contain the smallest integer greater than or equal to $num1



24

Strings
• String literals can be quoted either with single 

quotes or double quotes, e.g.,
$s1 = "This is a string";

$s2 = 'This is another string';

• The dot (.) operator is used to concatenate two 
strings in PHP:

$fname = "Joe";

$lname = "Blow"; 

$name = $fname . " " . $lname;

$name will contain "Joe Blow"



25

Escape Sequences
• Like all languages, certain characters have 

special meanings. These special/control 
characters are called escape sequences.  Some 
of the ones used in PHP:

Escape Sequence Meaning
\n insert a newline character
\r carriage return
\t horizontal tab
\\ backslash
\$ dollar
\" double quote



26

Single Quoted Strings
• In a single quoted string, escape sequences or variable 

names are not interpolated. 
• Example 1:

$str = '"Good morning", he said.';

The string $str would contain
"Good morning", he said.

• Example 2:
$myName = "Hong";
$greeting = 'Hello, $myName\n';

The string $greeting would contain the following 
sequence of characters including the characters \ and n at 
the end:

Hello, $myName\n



27

Double Quoted Strings
• If a double quoted string contains escape sequences or 

variable names, they are interpolated. E.g.,
$myName = "Hong";

$greeting = "Hello, $myName\n";

The string $greeting would contain the following 
sequence of characters
Hello, Hong

plus the new line character at the end.

• Note that you can do the same thing using:
$greeting = "Hello, " . $myName . "\n";



28

Operators
• These are very similar to JavaScript. Some 

examples:
Operator    Meaning Example Usage
> Greater than 2 > 3

!= Not equal $x != 4

+ Addition $x + 2 + $y

&&, || Logical AND, OR ($x > 4) && ($y < 3)

++ Increment by one $y++ ;

.               Concatenation $x . " and " . $y

etc



29

Type Coercion between String 
and Numbers

• When a number appears in the string context, it is implicitly 
converted to a string.

• When a string appears in the number context, it is implicitly 
converted to a number.

• If the string start with a sign or a digit, the string is 
converted

– either to an integer value, if the string does not contain the 
decimal point or e or E

– or to a float value, if the string contains decimal point or e or E.
– Non numeric characters following the number in the string are 

ignored.

• If the string does not start with a sign or a digit, the string is 
converted to zero (integer 0). 



30

Explicit Type Conversions
• Type casts, e.g., 

– (int)$total or  
– intval($total) or 
– settype($total, "integer")

• The type of a variable can be determined with
– gettype, e.g.,

• gettype($total)  

– or is_type, e.g.,
• is_integer($total)



31

Functions 
• We can define and use functions:

<?php
function add($a, $b) {
return $a+$b ;

}

$value = add(2,3) ;
print "<p>Two plus Three is $value.</p>" ;

?>

• Functions need not be defined before they are called.
• Functions can have a variable number of parameters.
• Function name is not case sensitive.



32

Some Notes on Functions 
1. Use meaningful names for functions.
2. Use comments at the start of the function to 

describe it.

3. Always pass the correct number of arguments to the 
function.

4. Return a value from the function using the return
statement. 

5. By default, variables are passed by value, not by 
reference.

6. To pass a variable by reference put an ampersand 
(&) in front of the variable name – not 
recommended.



33

Predefined Functions
• To ensure that PHP reports all errors, set error 

reporting level to E_ALL at the beginning:
error_reporting (E_ALL);

• PHP has many predefined variables. You can 
find out these variables as well as the version of 
PHP running on the server and configuration 
information by calling function phpinfo() in a 
PHP script.



34

Dates and Times in PHP 
• There are a set of functions you can use to get and 

format the date and time.  For example: 
echo (date(“l dS F, Y”));

Will return the current date in the format:
Monday 16th September, 2019

• The function getdate will return an array containing 
all the parts of the current date and time.

$dates = getdate();



35

Strings Functions
Function Meaning

$num = strlen($string); $num will contain the number of characters in 
$string.

$lower = strtolower($string); $lower will contain $string all in lower case.

$upper = strtoupper($string); $upper will contain $string all in upper case.

$new = ucfirst($string); $new will contain $string with the first 
character capitalized.

$new = ucwords($string); $new will contain $string with the first 
character of every word capitalized.

$new = trim($string); $new will contain $string with any spaces 
from the beginning or end of the string removed.

$new = chop($string); $new will contain $string with any spaces from 
the end of the string removed.

$part = substr($string, x, y); $part will contain a sub-string of $string
starting from position x, for y characters.



36

Regular Expressions
• You will probably want to use Regular 

Expressions in your PHP code.  The functions 
you will need are preg_match, 
preg_match_all and preg_replace.

• The rules you learned previously about 
constructing Regular Expressions are the same 
for PHP.  The functions to use them are just 
slightly different. You can read about them in 
your text.



37

Produce Output
• Output from a PHP script is HTML (may also 

include JavaScript code) that is sent to the 
browser

• HTML is sent to the browser through the standard 
output

• We may use print, printf and echo to 
generate output. Examples:
print ("<h2>Introduction</h2>");
print 3.14;
printf("The total is %d", $total);
echo "<p>Hello", "World!</p>";



38

Produce Output
1. As PHP functions are case-insensitive; so ECHO, echo

and Echo are all the same thing.
2. With echo, but not print(), you can send multiple, 

separate chunks of data using commas; e.g.,  echo
"Hello ", "World!";

3. echo and print() can be used to print text over 
multiple lines.

4. You can use the newline character (\n) to provide line 
breaks in the HTML code to make it more readable.

5. To use a quotation mark in the HTML within the PHP, 
you escape it (\").

6. The syntax of printf is the same as in C.



39

Program Control: Conditionals
• The if statement is similar to the if statement in 

JavaScript. Example:

if ($age >= 17) { 
echo "You can take your driving test"; 

} 

else { 
echo "You are too young to take your 

driving test"; 
}

• For all cases of the if, if there is only one statement, the 
curly brackets are not needed, but recommended.



40

Program Control: Conditionals
• Like in JavaScript, you can check multiple conditions:

if ($month == "April") { 
echo "It is April"; 

} else if ($month == "May") { 
echo "It is May"; 

} else { 
echo "It is not April or May"; 

}



41

Program Control: Conditionals
• The switch statement is nearly same as in JavaScript, and 

is used when a variable is to be checked against a number 
of values.  
switch ($value) { 

case "a":    
echo "value is a\n";
break; 

case "b":    
echo "value is b<br />\n";
break; 

default: 
echo "the value is unknown<br />\n";
break; 

}



42

Program Control: Loops
• The loop-while loop will be executed at least once.  This 

is because the test of the condition comes after the code 
has been executed. This is called a post-test loop.

do { 
$c = test_something(); 

} while ($c); 

• If you want a loop that could (under certain conditions) 
execute zero times (i.e., not execute), then you need to 
use a different loop. 



43

Program Control: Loops
• The while loop is the loop you need if there are 

conditions when the loop should not be executed. This is 
because the test of the condition comes before the code 
has been executed.  This is called a pre-test loop.

while ($d) { 
echo "ok<br />\n"; 
$d = test_something(); 

} 



44

Program Control: Loops
• The for loop is similar to that we encountered in 

JavaScript.

for ($i = 0; $i < 10; $i++) { 
echo "The value of i is $i<br />\n"; 

} 



45

Program Control: Loops
• The foreach loop is used with arrays and we will 

examine it when we consider arrays later in this topic.

foreach ($numbers as $num) { 
echo "$num <br />\n"; 

} 



46

Program Control: Be Careful!
• A condition can be true in PHP for a number of 

reasons.  Apart from the usual of testing a Boolean 
value or a conditional statement 
if ($a < 10) {

. . . 
}

• the following will return TRUE:
if ($var) {

. . .
}
if $var has a value other than 0, an empty string, or NULL



47

Splitting Control Blocks
• You can split one control statement over multiple  <?php 
… ?> tags, e.g., the following are equivalent

<?php if ($a) { ?>
<p>a is true.</p>

<?php } else { ?>
<p>a is not true.</p>

<?php } ?>

<?php 
if ($a) { 
echo ”<p>a is true.</p>" ;

} else {
echo ”<p>a is not true.</p>" ;

} 
?>



48

Splitting Control Blocks
• Splitting one control statement over multiple 
<?php … ?> tags is useful when you have a 
large chunk of HTML to print out, and do not 
want the hassle of putting them into multiple 
echo statements.



49

Processing HTML Forms
• One use of PHP is form processing.
• The form tag has two attributes:

action :  specifies the URL of the script to run on the 
server-side when the form is submitted.

method: set to either post or get; defines the argument 
format used to send data to the script.

• If the form uses HTTP GET method, the user 
inputs from the form will be sent to the server 
script in the form of query strings.

• If the form uses HTTP POST method, the user 
inputs from the form are included in the body of 
the request message.



50

Obtaining Input Data from 
an HTML Form

• Any form input with a name attribute will be available in the 
PHP script from a global array.

• If the form uses HTTP GET method, the user input data will 
be available from the global array $_GET.

• If the form uses HTTP POST method, the user input data 
will be available from the global array $_POST.

• For example, if the form has a text box with a 
name="UserName" attribute, the PHP script that 
processes the form can get the user name either from 
$_GET[ "UserName" ] or from 
$_POST[ "UserName" ], depending on which method is 
used by the form. 



51

Example: Google Query Strings

A lot of web 
applications 
use query 
strings to 

receive data 
from 

browsers.



52

Query String Format
• A query string of the format 
“sourceid=navclient&q=PHP”

basically means:

• There are two fields of data, separated by “&”
• The first data field name is “sourceid”, with value 

“navclient”.
• The second data field name is “q”, with value 

“PHP”.

• Data from HTML forms with method “GET” are sent to 
server scripts as query strings.



53

What Actually Happens:

Web Server
www.google.com

search

GET  /search?sourceid=navclient&q=PHP HTTP/1.1

HTTP/1.1  200 OK
...
<html>

...
</html>

1. Request from browser

2. Response from server

Web Browser



54

Processing Forms that use 
GET method

<html>
<body>
<p>
<?php

echo $_GET[ “MyName” ] ; 
?>

</p>
</body>

</html> Myname_get.php

Form_Get.html

Note how the script has 
access to the form input 
element “MyName” through 
a global array$_GET.

<html>
<body>

<form method="GET"
action="http://ceto.murdoch.edu.au/~s900432d/ICT286/examples/myname_get.php">
<p>  <label>Something to send: <input type="text" name="MyName” /> </label>

<input type="submit" value="Submit” /> </p>
</form>

</body>
</html>



55

1. Request Form_Get.html

2. Send Form_Get.html

3. Request 
/~s900432d/ICT286/examples/myname_get.php?MyName=hong+xie 

4. Send response with myname_get.php’s results 

Web Browser

Web Server on
ceto.murdoch.edu.au

Processing Forms that use 
GET method



56

The Form Before Submission

The page Form_Get.html displays a textbox for the 
user to type in something.



57

Note the new URL is pointing to the PHP script with the 
form input data appended to the URL in the form of a 
query string:

?MyName=hong+xie

The Result after Pressing 
Submit Button



58

Scripts and Forms in the 
Same directory

• If the PHP script is in the same directory as the 
HTML form document, we can put the relative path 
in the action attribute: action=”myname_get.php" instead of 
the full URL 
action="http://ceto.murdoch.edu.au/~s900432d/ICT286/examples/myname_get.php"

• This is better in cases when the web site consisting 
the script and form will be moved to different 
directories or different server together.

• Please use relative paths in your Major Assignments, 
as your files will be copied to an unknown directory for 
assessment.



59

Scripts and Forms in the 
same directory

<html>
<body>

<form method="GET" action=”myname_get.php">
<p>

<label> Something to send: 
<input type="text"  name="MyName” /> 

</label>
<input type="submit" value="Submit” />

</p>
</form>

</body>
</html>

Form_Get.html

Note the change in the action field



60

Using POST Method
<html>
<body>

<form method="POST" action=”myname_post.php">
<p>

<label> Something to send: 
<input type="text" name="MyName” /> </label>
<input type="submit" value="Submit” />

</p>
</form>

</body>
</html>

Form_Post.html



61

Using POST Method (cont’d)

Note that since the form uses POST method, the PHP 
script should use the global array $_POST to get the 
input value from the form.

<html>
<body>

<p>
<?php 

echo $_POST[“MyName”] ; 
?>

</p>
</body>

</html>



62

The Form Before Submission



63

Note how the form data are not part of the URL, unlike 
Form_Get.html. This is useful for passing data you do not want to 
appear on the screen.  NB: this does not ensure that the data is 
secure.

The Result After Pressing 
Submit



64

Web Server

myname_post.php

POST  /~s900432d/ICT286/examples/myname_post.php HTTP/1.1
...

MyName=hong xie

1. Request from browser, with data in the 
request body instead of the query string

2. Response from server

Web Browser

What Actually Happens:

HTTP/1.1  200 OK
...
<html>

...
</html>



65

File Handling 
• Files are the simplest method for storing 

persistent  data (i.e., data that do not disappear 
after the script finishes, unlike values in 
variables)

• There are other, more sophisticated, ways (e.g., 
databases, cookies, etc.) but they involve more 
overhead or have storage limitations.

• PHP provides basic file-handling functions.



66

Example File Handling 

$fd = fopen ("data.txt", "r"); # open data.txt for reading

while (!feof ($fd)) { # while not reached end-of-file
$buffer = fgets($fd); # read one line into $buffer
echo $buffer # do something with $buffer

}

fclose ($fd); # close the file



67

$fd=fopen("data.txt","r")
1. $fd is called the file handle and it ‘points’ at the file; this value is used 

when using the file, rather than the file name.

2. “data.txt” is the name of the file to be opened:

a. If the filename starts with HTTP, it is assumed to be on a remote 
web server and a standard HTTP session with the server is opened 
and the file is retrieved.

b. If the filename starts with FTP, it is assumed to be an ftp file and can 
be accessed.  Note: if the file needs a user ID and password, these 
details can be included in the fopen.

c. If the file is in the current directory, just the file name is needed; 
otherwise the directory must be given.  Use relative path for files.

d. If the file is on a Windows machine, the backslashes (\) in the path 
must be escaped; i.e., use two backslashes for each one required.



68

$fd=fopen("data.txt","r")
3. “r” is the mode to use when opening the file.  The more common ones are:

• r opens the file for reading, starting from the beginning of the file.

• r+ opens the file for reading and writing, starting from the 
beginning of the file.

• w opens the file for writing, starting at the beginning of the file 
and sets the file length to zero; this means that any data 
in the file will be overwritten.  If the file does not exist, it will 
be created.

• a opens the file for writing, starting at the end of the file 
(appending).  If the file does not exist, it will be created.

Note: you only have one copy of the file to read/write etc.  This may have 
implications for the accuracy of the data; for example if someone else reads 
or writes the file while you are reading and writing it.  If this is a problem, you 
may have to use a multi-user database.



69

while(!feof($fd))

1. feof($fd) returns TRUE if the end of the file is 
reached and FALSE otherwise.

2. Notice the use of the file handle $fd, not the name of 
the file.

3. The while statement processes each record within the 
file until the end of file is reached and then we will drop 
out of the loop.  You will get an error if you try to read 
past the end of a file.



70

$buffer=fgets($fd);
1. fgets($fd) reads data from the file until a newline 

character is encountered, or end of file.  In other 
words, one record at a time.  The newline character is 
included as part of the string in $buffer.

2. Notice the use of the file handle $fd, not the name of 
the file.

3. If you are reading HTML, use fgetss(), which is the 
same as fgets(), but will strip any HTML tags from 
the record.



71

fclose($fd);

1. fclose($fd) closes the file pointed at by the handle.

2. Notice the use of the handle $fd, not the name of the 
file.

3. You should always close files you have opened before 
ending the session.



72

Example File Handling
$fd = fopen ("data.txt", "a"); # open data.txt for appending
fputs($fd, "A new line."); # write a line into the end of file
fclose ($fd); # close the file

1. This is an example of appending a new record to a file.

2. fopen() we have already considered.  Here used with 
"a" for append.

3. fputs($fd, "A new line."); writes the string to 
the end of the file.

4. An optional length can be used with fputs(); in which 
case only that number of characters will be written.



73

Example File Handling
$fd = fopen ("data.txt", "w");  # open data.txt 

# for overwriting
fputs($fd, "A new line.");
fclose ($fd);

1. In this example the existing file “data.txt” will be 
overwritten.

2. The file will be opened, the length of the file changed to zero, 
and the handle ($fd) will point at the beginning of the file, 
ready to write.  If the file does not exist, one will be created, 
ready for writing.  This may have implications, if you forget to 
include the directory, or incorrectly define the path to the file.

3. fputs() will write the string to the file and file “data.txt”
will just contain that string when it is closed.



74

Other File Related 
Functions

• Use file_exists (filename) to determine 
whether file exists before trying to open it.

• Use fread(file_handle, #bytes) to read up to 
#bytes bytes from the file and returns it, or return 
FALSE if it encounters an error.

• Use $bytes = fwrite(file_handle, string) 
to write the string to the file.

• Files can be locked to avoid interference from 
concurrent accesses with flock.



75

References
• Main PHP site:

• http://www.php.net/
• A survey of other important PHP sites can be 

found there at http://www.php.net/sites.php 
and http://www.php.net/links.php.

• Tutorials:
• http://www.w3schools.com/php


